Microfluidics-based side view flow chamber reveals tether-to-sling transition in rolling neutrophils

نویسندگان

  • Alex Marki
  • Edgar Gutierrez
  • Zbigniew Mikulski
  • Alex Groisman
  • Klaus Ley
چکیده

Neutrophils rolling at high shear stress (above 6 dyn/cm(2)) form tethers in the rear and slings in the front. Here, we developed a novel photo-lithographically fabricated, silicone(PDMS)-based side-view flow chamber to dynamically visualize tether and sling formation. Fluorescently membrane-labeled mouse neutrophils rolled on P-selectin substrate at 10 dyn/cm(2). Most rolling cells formed 5 tethers that were 2-30 μm long. Breaking of a single tether caused a reproducible forward microjump of the cell, showing that the tether was load-bearing. About 15% of all tether-breaking events resulted in slings. The tether-to-sling transition was fast (<100 ms) with no visible material extending above the rolling cell, suggesting a very low bending modulus of the tether. The sling downstream of the rolling cell aligned according to the streamlines before landing on the flow chamber. These new observations explain how slings form from tethers and provide insight into their biomechanical properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic alterations of membrane tethers stabilize leukocyte rolling on P-selectin.

Leukocytes rolling on selectins extrude thin membrane tethers that might stabilize rolling velocities despite marked alterations in wall shear stress. To test this hypothesis, we used differential interference contrast videomicroscopy to visualize formation and breakage of membrane tethers as neutrophils rolled on P-selectin under flow. Neutrophils rapidly increased tether number as wall shear ...

متن کامل

Interplay between membrane cholesterol and ethanol differentially regulates neutrophil tether mechanics and rolling dynamics.

Using microfluidic assays at a 100 s⁻¹ wall shear rate, we examined the effects of ethanol on cholesterol-loaded neutrophils with respect to: (1) collision efficiency and membrane tethering to P-selectin-coated microbeads, (2) rolling on P-selectin-coated surfaces, and (3) primary and secondary interactions with neutrophils pre-adhered to intercellular adhesion molecule-1 (ICAM-1). Using methyl...

متن کامل

Autoperfused mouse flow chamber reveals synergistic neutrophil accumulation through P-selectin and E-selectin.

To study rolling of mouse neutrophils on P- and E-selectins in whole blood and without cell isolation, we constructed an autoperfused flow chamber made from rectangular microslides (0.2x2 mm) perfused from a carotid artery catheter. A differential pressure transducer served to measure wall shear stress. Green fluorescent neutrophils rolled on P-selectin but not E-selectin coated at 50 ng/ml, wi...

متن کامل

Ethanol enhances neutrophil membrane tether growth and slows rolling on P-selectin but reduces capture from flow and firm arrest on IL-1-treated endothelium.

The effects of ethanol at physiological concentrations on neutrophil membrane tether pulling, adhesion lifetime, rolling, and firm arrest behavior were studied in parallel-plate flow chamber assays with adherent 1-microm-diameter P-selectin-coated beads, P-selectin-coated surfaces, or IL-1-stimulated human endothelium. Ethanol (0.3% by volume) had no effect on P-selectin glycoprotein ligand-1 (...

متن کامل

Glycosphingolipids on Human Myeloid Cells Stabilize E-Selectin-Dependent Rolling in the Multistep Leukocyte Adhesion Cascade.

OBJECTIVE Recent studies suggest that the E-selectin ligands expressed on human leukocytes may differ from those in other species, particularly mice. To elaborate on this, we evaluated the impact of glycosphingolipids expressed on human myeloid cells in regulating E-selectin-mediated cell adhesion. APPROACH AND RESULTS A series of modified human cell lines and primary neutrophils were created...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016